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Abstract

A densely packed bed of granular material immersed in a fluid is cyclically agitated. The fluid may be compressible due

to a small amount of gas trapped in the pores. From the general two-phase equations the oscillatory motion characteristics

are determined. A penetration depth of the order of magnitude of a few particle diameters is found. Secular cycle-averaged

effects are investigated and two are identified: a particle pressure due to irreversible processes and collisions during the

oscillation, which is linear in the velocity amplitude and a quadratic effect that arises due to non-zero correlations between

the fluctuations in solids volume fraction and those in velocity, displacement and pore pressure. Orders of magnitude and

time constants of both these secular effects are established. The analysis shows that the secular effects manifest themselves

in a few cycles of the vibration. From constitutive estimates the influence on mean intergranular stress and interstitial pore

pressure is obtained. It is found that the quadratic effect hardly affects the intergranular stress, but has a substantial

influence on the pore pressure, which is reduced. The linear particle pressure effectively decreases the magnitude of the

compressive intergranular stress. Linear and quadratic effects have markedly different frequency dependencies. A

comparison with experiment on this point is reported. Applications are vibrated filtration and agitated magma chambers

that contain sediment. For the latter the theory explains the formation of gas bubbles associated with rapid fluid pressure

reduction during earthquake loading.

r 2007 Elsevier Ltd. All rights reserved.
0. Introduction

This paper is concerned with the mechanics of a rapidly agitated, densely packed, fluid-immersed particulate
aggregate. There are two key aspects to this problem. The first is the behaviour of the oscillated bed, which
deals with the absorption of energy, penetration depth and modes of motion. The second is the so-called
secular part of the problem, that is the slow, quasi-static motion and development of stresses and pressures,
which are associated with the oscillatory motion. For example, a densely packed, fluid-immersed bed which is
oscillated from below may exhibit fluidisation phenomena. In this paper both aspects will be treated. There are
a number of practical applications for this problem in civil and chemical engineering and in geology.
Oscillated-septum dead-end filtration—a chemical engineering application—has been studied in the past [1–3]
(in the dead-end filter geometry there is also a mean downward flow, which exerts a force on the particle bed).
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a mean particle radius (m)
A Eq. (26) (dimensionless)
B Eq. (26) (dimensionless)
c proportionality constant for the particle

pressure (dimensionless)
CE rate of skeletal stiffness reduction (Pa)
CR rate of fluid drag resistance reduction (Pa

sm-2)
d displacement (m)
DE rate of change of Ef (dimensionless)
DR CRa2=Z (dimensionless)
e 1�f

f (dimensionless)
ezz excess strain (dimensionless)
E skeletal stiffness (Pa)
Ef ð2:17� eÞ2=ð1þ eÞ (dimensionless)
g acceleration due to gravity (m s�2)
h gap width (m)
H layer thickness (m)
p fluid pressure (Pa)
q ð1� fÞu (m s�1)
r fv (m s�1)
RðfÞ solidosity dependent drag coefficient

(Pa sm�2)
R fluid drag resistance (Pa sm�2)
t time (s)

u fluid velocity (m s�1)
v solids velocity (m s�1)
x position vector (m)
z vertical position (m)

Greek letters

b compressibility (Pa�1)
g damping coefficient (Pa s)
d Kronecker delta (dimensionless)
Z melt viscosity (Pa s)
k coefficient for the resistance R (dimen-

sionless)
l inverse penetration depth (m�1)

l0 ReðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rfoz=ð2EÞ

q
=ð1� fÞ (dimen-

sionless)
f solids volume fraction (dimensionless)
p particle pressure (Pa)
w attached fluid mass coefficient (dimen-

sionless)
rf melt density (kgm�3)
rs solids density (kgm�3)
S partial solid-phase stress (Pa)
s partial fluid-phase stress (Pa)
t intergranular stress (Pa)
o circular frequency (Hz)
B Ebð1� fÞ þ 1 (dimensionless)
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The purpose of the agitation in this case is to clear the septum of particulates so unclogging the filter, which
enhances the performance. The geophysical application is quite novel and concerns earthquakes in volcano
chambers. It is believed that over time, as the volcano is dormant, a granular deposit develops in the chamber.
When the latter is agitated by an earthquake the pore pressure is rapidly reduced in value, thus allowing gas
bubbles to form. This explains the origin of the gas [4,5]. Clearly, modelling this phenomenon is crucial for the
understanding of the combination of parameters that influence the likelihood of volcanic activity. There is
ample descriptive literature on the subject [6–8], but hardly any modelling of this multi-physics problem.

The filter problem and the volcano problem operate in quite different parameter ranges. For example, the
viscosity of the fluid in the filter problem is typically that of water (0.001 Pa s), while magma viscosity may be
three or four orders of magnitude larger. Water, furthermore, may be regarded as incompressible, while
magma with a small gas content is essentially compressible. As approximations will be introduced to lead to
transparent results these ranges are important. The comparison between the parameter ranges for the dead-
end filtration problem and the agitated magma chamber problem is very interesting, as it transpires that
though frequencies and viscosities are very different, the penetration depth turns out to be roughly the same.
Comparing these two cases, therefore, highlights two limits of the manner in which slow secular effects become
manifest.

In this paper the general theory of oscillated particle–fluid beds is briefly reviewed. Then the secular effects
are discussed, especially the particle pressure (which is a linear effect) and the quadratic secular terms. The
oscillated bed is then calculated and approximations that are appropriate to the parameter ranges are
introduced, leading to a simple expression for the penetration depth. The associated secular contributions to
the static stresses are then estimated. The time-development of the latter is shown to take place in the dynamic
range (that is, a time constant of the order of magnitude of the period of oscillation is obtained). Finally, the
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range of influence of the secular effects on both the particle-phase and fluid-phase stress is estimated and
discussed in light of experimental results.
1. Oscillated packed beds and slurries (general theoretical considerations)

1.1. Governing equations

The particle-phase mass density is denoted by rs; the solids volume fraction is f and the solid phase velocity
is v. The fluid mass density is called rf and the fluid-phase velocity u. All these are field variables and depend
on the position x and the time t. The basic continuity equations for the solid phase and fluid phase are given in
the literature, see Refs. [9–11]:

qðrsfÞ
qt
þ

qðrsvifÞ
qxi

¼ 0, (1)

q
qt
½rf ð1� fÞ� þ

q½ð1� fÞrf ui�

qxi

¼ 0, (2)

where Einstein’s summation convention is used.
The solids mass density is assumed to be constant, but the fluid may be compressible and therefore rf can

depend on position and time. The main cause of the compressibility is the presence of a small amount of gas in
bubble form. The relation between fluid compressibility b and fluid pressure p is a constitutive relation of the
form r�1f Drf =Dt ¼ bDp=Dt (the time derivative D=Dt is co-moving with the mean fluid motion). The
variations in fluid density drf are expected to be small compared to the mean rf . Eq. (2) is expanded and terms
of order drf =rf may be neglected compared to unity. Therefore, the continuity equation for the fluid is
approximately

ð1� fÞb
Dp

Dt
�

qf
qt
þ

q½ð1� fÞui�

qxi

¼ 0. (3)

The gas phase is a small minority species embedded in the fluid. No separate equation set for this phase is
necessary, as the motion of the gas phase does not significantly affect the stresses in the medium. The gas phase
comes in the form of small bubbles.

The equations of motion (the momentum balance equations) for a fluid–solid mixture are well-
researched and reported in the literature [9–11]. For each Cartesian component ð‘ ¼ 1; 2; 3Þ, the equations
read

frs

D0v‘

Dt
¼

q
qxi

ðfS‘iÞ þ fRðfÞðu‘ � v‘Þ þ wfrf

D

Dt
ðu‘ � v‘Þ þ frsg‘, (4)

ð1� fÞrf

Du‘

Dt
¼

q
qxi

½ð1� fÞs‘i� � fRðfÞðu‘ � v‘Þ � wfrf

D

Dt
ðu‘ � v‘Þ þ ð1� fÞrf g‘. (5)

The symbols used in these two vector equations are as follows. In addition to the fluid co-moving derivative
D=Dt, a co-moving derivative with the mean solids motion is formally required and is denoted by D0=Dt. The
fluid-phase stress is r and the particle-phase stress is R. For the fluid stress a simple isotropic form is assumed:
�pd, where d is the unity tensor (the Kronecker delta). The intergranular stress s is obtained from the particle-
phase stress and the fluid pressure: t ¼ fðRþ pdÞ. The fluid drag force is proportional to the velocity
difference in particle and fluid phases with proportionality coefficient RðfÞ. A set of terms is introduced to
compensate for the attached mass of fluid to the particles. These terms require a proportionality constant w,
which is a phenomenological parameter (a typical value is w ¼ 0:5). Body forces associated with gravity are
also introduced; the acceleration due to gravity is g.

There are a number of further small corrective terms reported in the literature, see for example Ref. [11].
These are all neglected for the problem in hand.
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In order to distinguish between oscillatory and secular motion the four balance equations are recast in terms
of the flux fields q � ð1� fÞu and r � fv. This gives

qf
qt
þ

qri

qxi

¼ 0, (6a)

ð1� fÞb
Dp

Dt
�

qf
qt
þ

qqi

qxi

¼ 0, (6b)

rs

D0r‘

Dt
�

rsr‘

f
D0f
Dt
¼

q
qxi

ðfS‘iÞ þ RðfÞ
fq‘
1� f

� r‘

� �
þ wfrf

D

Dt

q‘
1� f

�
r‘

f

� �
þ frsg‘, (6c)

rf

Dq‘
Dt
þ

rf q‘

1� f
Df
Dt
¼

q
qxi

½ð1� fÞs‘i� � RðfÞ
fq‘
1� f

� r‘

� �
� wfrf

D

Dt

q‘
1� f

�
r‘

f

� �
þ ð1� fÞrf g‘. (6d)

In the physics of an agitated slurry two time scales need to be distinguished: the rapid oscillatory effect and the
accompanying slow, secular (consolidatory or quasi-static) motion. The latter are caused by the excitations of
the particles in the slurry, which lead to a particle pressure that is more or less constant in time. Both rapid and
secular phenomena are described by the above equation set. Oscillatory (sinusoidal) solutions are obtained by
solving the equations for the first Fourier component. These give an impression of the decay of the amplitude
of oscillation for an agitated packed bed layer. The equilibrium equations for the quasi-static deformation are
also derived. The terms in the latter require input from the oscillatory solution—notably an expression for the
particle pressure and an evaluation of the time averages of products of oscillating quantities. All solutions are
carried out in one dimension—the vertical z direction. The acceleration due to gravity is g3 ¼ �g; g is positive.

In all this constitutive relations for the solid-phase intergranular stress have to be provided. For contacting
particles a stiffness EðfÞ is introduced, as well as a damping associated with relative interparticle motion in a
fluid. The damping coefficient is called g. Strictly speaking the particles could find themselves in a fluidised
state; in that case the stiffness becomes zero, but the damping remains. In addition to these traditionally well-
known constitutive properties, a particle pressure needs to be introduced to account for the momentum
transfer of non-reversibly interacting particles in an agitated slurry.
1.2. Particle pressure and distinguishing time scales

The concept of (expansive) particle pressure in a dense slurry was introduced by McTigue and Jenkins [12],
who used it to describe migration effects in non-uniformly sheared slurries. A particle pressure arises when
there is the possibility of net momentum transfer due to an asymmetry in the particle–particle interaction, in
other words if approaching particles and departing particles do not sense equal-magnitude (opposite sign)
forces. If a purely fluid-mediated interaction between perfectly smooth particles is considered there is no net
transfer, but if particles can touch and the collision occurs at non-zero restitution then a particle pressure
develops. The effect is not necessarily confined to the collisional regime. Nonlinearity in the stress–strain
response of a packed bed at small compressive stress may also lead to particle pressure type phenomena. This
has been investigated recently by Davis and Koenders [13] and to demonstrate the phenomenon a cartoon
from that paper is included here: Fig. 1. Basically, the stress–strain curve goes through a hysteresis loop, but
does so in such a way that the response of the medium as a whole can be described by an oscillatory part, while
necessarily a mean stress must be included, because the mean stress over the loop does not equal the average
applied stress. It must be emphasised that the particle pressure, so obtained, is necessarily only a small fraction
of the total intergranular stress and for the remainder of this paper this effect is neglected.

If particles make and break contacts at speed substantial transfer of momentum takes place. For oscillated
slurries this effect is described by Gundogdu et al. [2] and its order of magnitude is estimated. The fluid
interaction for rough particles is calculated using various approaches by Patir and Cheng [14] and Smart
and Leighton [15] and—more recently—by Jenkins and Koenders [16]. The particle pressure p for a
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Fig. 1. A strain-controlled cycle of an oscillated packed bed in a nonlinear medium, exhibiting hysteresis. During loading and unloading

the stresses follow different paths. The time-average of the stress value 1=T
R T

0 sðtÞdt over the cycle is not equal to 1
2
ðsmax � sminÞ. The

difference is the particle pressure.
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granular assembly in a fluid in which the solids oscillate rapidly with a velocity gradient amplitude jqev=qzj is
estimated as

p ¼ cZ
qev
qz

���� ���� ah , (7)

where Z is the interstitial fluid viscosity, a the particle radius, h the mean surface to surface distance between
the particles that take part in collisions and c a coefficient of order of magnitude 0.1–0.8.

In addition to the particle pressure the equations of motion possess products of oscillating variables. When
these are averaged over the cycle time, and depending on the phase shift between the variables, non-zero
contributions result. These are quadratic terms in the applied oscillating fields and below an explicit evaluation
will be carried out.

The equations that describe the phenomena at the two time scales are obtained as follows. All field
parameters are written as a time-averaged part (denoted by an over bar) plus an oscillating part (indicated by a
tilde); for example fðx; tÞ ¼ fðx; tÞ þ efðx; tÞ. Then the Eqs. (6a)–(6d) are considered. To begin with the first
Fourier component is isolated to give an expression for the oscillating fields. Then the equations themselves
are time-averaged to give the slow variation in the process; in addition the dynamic terms are all neglected.
The quasi-static evolution in the slurry is a variation superimposed on static equilibrium. It is caused by the
‘switching on’ of the particle pressure and the average of the quadratic products of the oscillating fields. So the
secular effect of the oscillation is that the interstitial fluid pressure and solid-phase stress are modified.

The scenario is informed by the time constants of the problem. Time-averaging is done over periods that are
long compared to the period of oscillation, but short compared with the duration of the phenomenon (in the
case of the earthquake-excited magma chamber the typical period of oscillation is 0.1 s, while the duration is
some 60 s). The secular equations themselves possess a time constant, which will be estimated.

2. Packed beds and slurries (estimates of field parameters)

2.1. Static limit

First, the purely static limit is considered. All the velocities are zero and all time-dependent terms are
irrelevant. The stresses depend on the vertical coordinate z only and they obey the set

qtstat
qz
� f

qpstat

qz
� frsg ¼ 0, (8)
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�
qpstat

qz
� rf g ¼ 0. (9)

These equations are of course easily solved. At the top of the bed ðz ¼ HÞ the intergranular stress and the fluid
pressure vanish and therefore

tstat ¼ fðrs � rf Þgðz�HÞ, (10)

pstat ¼ �rf gðz�HÞ. (11)

For convenience it is here assumed that the fluid and particle layers have the same height. If these are different
the formulae are easily adapted. Similarly, if a mean flow is present, the pressure and stress will change, see
Ref. [1].
2.2. Oscillatory motion

The oscillatory motion is obtained from expanding Eqs. (6a)–(6d) to retain the first Fourier component
only. These equations are then solved. All the field parameters depend on position and time according to
e�lzeiot. Here l is the (complex) wavenumber and o the circular frequency of excitation. The interesting
solution for the purposes to hand is the one that is localised around the bottom of the bed at z ¼ 0; at this
point the aggregate is agitated by a sinusoidal displacement d with amplitude bd.

A key assumption that will be made is that the fluctuations in the solidosity are small compared to the mean
value. The equations of continuity and the equations of motion for this first Fourier component become

qef
qt
þ

qeri

qxi

¼ 0, (12a)

ð1� fÞb
Dep
Dt
�

qef
qt
þ

qeqi

qxi

¼ 0, (12b)

rs

D0er‘
Dt
�

rsr‘

f

D0ef
Dt
¼

q
qxi

ðet‘i � ffpd‘iÞ þ RðfÞ
feq‘
1� f

� er‘ þ efq‘

ð1� fÞ2

 !

þ gRðfÞ fq‘

1� f
� r‘

� �
þ wfrf

D

Dt

feq‘
1� f

� er‘ þ efq‘

ð1� fÞ2

 !
þ efrsg‘, ð12cÞ

rf

Deq‘
Dt
þ

rf q‘

1� f

Def
Dt
¼ �

q
qx‘
½ gð1� fÞp� � RðfÞ

feq‘
1� f

� er‘ þ efq‘

ð1� fÞ2

 !

� gRðfÞ fq‘

1� f
� r‘

� �
� wfrf

D

Dt

feq‘
1� f

� er‘ þ efq‘

ð1� fÞ2

 !
� efrf g‘. ð12dÞ

Interest is now focussed on one-dimensional oscillatory motion in the z-direction. The mean motions q and r

are supposed to be small compared to the amplitude of these field variables. Furthermore, the oscillatory parts

of the solid phase intergranular stress satisfy the constitutive equation etzz ¼ EðfÞeezz þ gðfÞqevz=qzþgEðfÞezz þ
ggðfÞqvz=qz, where ezz is the strain, E the stiffness and g the damping. For the parameter gRðfÞ a

constitutive form gRðfÞ ¼ CR
ef is introduced and similarly gEðfÞ ¼ CE

ef; below it is shown that the damping
does not play a prominent role and therefore this parameter is not expanded. Using these elements Eqs.
(12a)–(12d) take the form

qef
qt
þ

qerz

qz
¼ 0, (13a)
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ð1� fÞb
Dep
Dt
�

qef
qt
þ

qeqz

qz
¼ 0, (13b)

rs

qerz

qt
¼

q
qz
ðEðfÞeezz þ

gEðfÞezzÞ þ
1

f
ggðfÞ qrz

qz
þ gðfÞ

q
qz

erz

f
�

rz
ef

f2

 !

� fep� pefþ RðfÞ
feqz

1� f
� erz þ

efqz

ð1� fÞ2

 !

þ CR
ef fqz

1� f
� rz

� �
þ wfrf

q
qt

feqz

1� f
� erz þ

efqz

ð1� fÞ2

 !
� efrsg, ð13cÞ

rf

qeqz

qt
¼ �

q
qz
½ð1� fÞep� efp� � RðfÞ

feqz

1� f
� erz þ

efqz

ð1� fÞ2

 !

� CR
ef fqz

1� f
� rz

� �
� wfrf

q
qt

feqz

1� f
� erz þ

efqz

ð1� fÞ2

 !
þ efrf g. ð13dÞ

These equations are developed for the case when both the constitutive parameters E, g, etc. and the mean field
variables f, p may be considered to be time independent. Now, if the penetration depth is much smaller than
the length scale over which the constitutive parameters and mean field variables change appreciably, the
average value of the parameters may be used for Eqs. (13a)–(13d). In that case the solution of the oscillatory
field parameters has the form expðlzÞ expðiotÞ and a value for l is easily derived. The average is evaluated over
a length scale of order of magnitude of jlj�1.

The presence of the fluid pressure presents a problem. However, the context here is a strongly localised
phenomenon for which jlj�1 is of the order of magnitude of a few mean particle diameters. Let the
phenomenon take place in the vicinity of z ¼ 0, then the pressure field may be replaced by its mean in this

small region hpi. The stress divergence terms in the equations are now q=qzðEeezz þ gqevz=qz� fep� pefÞ ¼
Eqeezz=qzþ gq2evz=qz2 � fqep=qz� hpiqef=qz and q=qz½ð1� fÞep� efp� ¼ ð1� fÞqep=qz� hpiqef=qz. So, it fol-
lows that—even considering constant constitutive parameters—the set of equations (13a)–(13d) can in
principle only be solved in conjunction with the secular equations, which should yield hpi and possibly the
gradients of this parameter. However, it will be shown that in practice these parameters are not important in
the estimate of l.

The equation set (13a)–(13d) is a linear system, with a characteristic polynomial PðlÞ. The roots of the
equation PðlÞ ¼ 0 yield a set of solutions for l. In order to obtain the polynomial PðlÞ seteezz ¼ ðioÞ

�1qðerz=f� rz
ef=f2
Þ=qz. It is found that the resulting expression is rather long, but substantial

shortening is possible when simplifying assumptions are made. The first of these is:
(1) The mean velocities (and their gradients) are so small that they do not influence the oscillatory

behaviour. The reason is that the mean velocities represent secular changes and these take place on a much
slower time scale than the oscillatory motion. The polynomial becomes

PðlÞ ¼ �
l4

f
ðEð1� fÞ þ iogð1� fÞ þ hpifÞ þ l3gfðfðrf � rsÞ þ rsÞ

þ l2o �
worf � R

ð1� fÞ
� foðEbwrf þ brf ðiogw� hpiÞ þ rf � rsÞ

"

�
brf oðE þ iogÞ

f
þ EbðiRþ rf oÞ � oðRbgþ brf ðhpi � iogÞ � wrf þ rsÞ

#
þ lbgofiRfðrf � rsÞ � rf o½wf

2
ðrf � rsÞ þ rsðf� 1Þ�g

� bo3fiRðfðrf � rsÞ � rf Þ � rf o½wfðfðrf � rsÞ � rf Þ þ rsðf� 1Þ�g. ð14Þ
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Table 1

Typical values for the parameters of the problem for a magma chamber

rf 2:3� 103 kgm�3 o 60 s�1 H 100m

rs 2:5� 103 kgm�3 E 1� 108 Pa g 10Z

f 0:6 b 1� 10�8 Pa a 10�3 m

w 0:5 Z 1� 10 Pa s g 10m s�2

R 1010 Pa sm�2 k 100 a=h 100

hpi 105 Pa l0 1=ð20� aÞ z 1:5

Table 2

Typical values for the parameters of the problem for an oscillated filter problem (see Ref. [1])

rf 1� 103 kgm�3 o 600 s�1 H 0.1m

rs 1:6� 103 kgm�3 E 1� 104 Pa g 10Z

f 0:6 b 1� 10�8 Pa a 10�3 m

w 0:5 Z 1� 10�3 Pa s g 10m s�2

R 106 Pa sm�2 k 100 a=h 100

hpi 103 Pa l0 1=ð20� aÞ z 1
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This simplifies under certain assumptions informed by typical values for the parameters, listed in Tables 1
and 2. In addition to assumption 1 they are the following:

(2) The stiffness E is much greater than the mean fluid pressure hpi. This can be determined simply from the
numbers. There may be problems with this when the bed fluidises, which needs separate investigation.

(3) The mean solidosity f is in the range 0.5–0.7. These are normally expected values for an unfluidised
granular medium.

(4) The parameter orf 5R. The resistance R is of the form kZ=a2, where k is a factor, Z the fluid viscosity
and a the particle diameter. Now, the ratio orf =R is of the form ðoaÞrf a=ðkZÞ. As ðoaÞ has the dimension of a
speed, the ratio orf =R is akin to a Reynolds number. So, other than doing the numbers for a particular case, it
is observed that the oscillatory motion leads to slow interstitial flow.

(5) grf is much smaller than jljE; this follows simply from a comparison of the numbers for jlj�a�1. This is
an approximation that says something about the nature of the localised phenomenon. Let the fluid pressure be
influenced by the oscillatory motion to such an extreme extent that jhqp=qzij ’ jljhpi, which is the maximum
attenuation of the mean fluid pressure that is possible. Then it follows from assumption 2 that jhqp=qzij5jljE,
thus extending the finding to the gradient of the pressure.

Using these assumptions the polynomial reduces to

PðlÞ ¼
l4

f
½ðE þ iogÞðf� 1Þ� þ l2o½iEbRfðf� 1Þ � Rfðbðf� 1Þgoþ iÞ�

þ iRbfo3ð�fðrf � rsÞ þ rf Þ ¼ 0. ð15Þ

This equation is easily solved, though the result is not very transparent. However, an approximation can be
made that is relevant to the current application. In practical terms the difference between rf and rs is small, so
one may set rs ¼ rf þ dr, where dr=rf is a number that is rather smaller than unity. It is also observed that in

practice og=E is a small parameter. Now, making good use of approximation 4, above, it is found that up to
first order in dr and og the two roots l2 are

l2 ¼
iRfoz

Eð1� fÞ2
þ

drð1� fÞo2b
z

þ
goRf

E2ð1� fÞ2
;�

bdrfo2ð1� fÞ
z

, (16)

where a convenient parameter z � Ebð1� fÞ þ 1 has been introduced.
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The largest value (by far) is the first root. For this case, the relationship between the various field parameters
is expressed in the ratios of the amplitudes, which are denoted by hats

bp ¼ � ffiffiffiffiffiffiffiffiffiffiffiffi
2ERz

p
ð1� iÞ

2

ffiffiffiffiffiffiffi
fo

q
ð1� fÞ

br; bf ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2Rfz

q
ð1� iÞ

2
ffiffiffiffiffiffiffi
Eo
p

ð1� fÞ
br; bq ¼ � zþ f� 1

f
br. (17)

2.3. Cycle-averaged cross-products and particle pressure

Defining the inverse penetration depth ReðlÞ ¼ l0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rfoz=ð2EÞ

q
=ð1� fÞ, the cross product averages that

are necessary for the development of the secular equation can be evaluated. For example,

erz
ef ¼ o

2p

Z 2p=o

0

Reðbreiote�lzÞReðbfeiote�lzÞdt ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2Rzf

q
e�2l0z

4
ffiffiffiffiffiffiffi
Eo
p

ð1� fÞ
br2. (18)

The others are obtained in a similar way

eqz
ef ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rf3z

q
ðzþ f� 1Þe�2l0z

4

ffiffiffiffiffiffiffiffiffiffiffi
Eof

q
ð1� fÞ

br2, (19)

epef ¼ � Rze�2l0z

2ð1� fÞ2
br2, (20)

qep
qt
ef ¼ 0, (21)

qed
qz
ef ¼ � Rze�2l0z

2Eoð1� fÞ2
br2. (22)

Finally, the particle pressure becomes

p ¼ cZ
qev
qz

���� ���� ah ¼ cZl0jbrje�l0z. (23)

2.4. Secular motion

The secular equations are obtained from Eqs. (6a)–(6d). They involve averages of fields and averages of
double products of fluctuations of fields. Two parameters are introduced, CR defined as qR=qf and CE and
qE=qf; straightforward evaluation yields the following:

qf
qt
þ

qrz

qz
¼ 0, (24a)

ð1� fÞb
qp

qt
þ

qz

1� f
qp

qz

� �
� bef qep

qt
�

qf
qt
þ

qqz

qz
¼ 0, (24b)

q
qz
ðtzz � pþ CE

qed
qz
ef� fp� efepÞ þ R

fqz

ð1� fÞ
� rz

� �
þ CR

fðefeqzÞ

1� f
� ðeferzÞ þ

ðef2
Þqz

ð1� fÞ2

 !
� frsg ¼ 0, ð24cÞ
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�
q
qz
½ð1� fÞp� þ

q
qz
ðefepÞ � R

fqz

ð1� fÞ
� rz

� �
� CR

fðefeqzÞ

1� f
� ðeferzÞ þ

ðef2
Þqz

ð1� fÞ2

 !
� ð1� fÞrf g ¼ 0. (24d)

The appropriate term for the particle pressure has also been introduced here. The term qf=qt is eliminated and
the cross products are inserted. These steps lead to the following simple equations:

qf
qt
þ

qrz

qz
¼ 0, (25a)

ð1� fÞb
qp

qt
þ

qz

1� f
qp

qz

� �
þ

qrz

qz
þ

qqz

qz
¼ 0, (25b)

q
qz
ðtzz � bpe�l0z � Be�2l0z � fpÞ þ R

fqz

ð1� fÞ
� rz

� �
� frsg ¼ Ae�2l0z, (25c)

q
qz
½ð1� fÞp� þ R

fqz

ð1� fÞ
� rz

� �
� ð1� fÞrf g ¼ Ae�2l0z, (25d)

where

A ¼
zðCRð1� fÞ þ 2RÞ

4ð1� fÞ3

ffiffiffiffiffiffiffiffiffiffiffiffi
2Rfz
oE

s
br2; B ¼

CERz

2Eoð1� fÞ2
br2; bp ¼ cZl0jbrj; br ¼ ofbd. (26)

Some time after the oscillation has been ‘switched on’ the system will be in steady state: the velocities and time
derivatives will be negligible. Then, assuming Hbl�10 , the solution for the stresses is simply

tzz ¼ bpe�l0z þ Be�2l0z �
Ae�2l0z

2l0ð1� fÞ
þ gfðz�HÞðrs � rf Þ, (27)

p ¼ �
Ae�2l0z

2l0ð1� fÞ
� gðz�HÞrf . (28)

It is seen that the effect of the oscillation is to reduce the fluid pressure in a thin zone at z ¼ 0. The compressive
stress is increased by the term proportional to A, but decreased by the terms proportional to B and bp.

2.5. Time-dependent behaviour at the onset of the oscillation

The way in which the equilibrium state described by Eqs. (27) and (28) comes into being is now investigated.
This is a non-trivial problem. As a first approximation the particle pressure is neglected and the equations are
linearised by neglecting products of parameters. The parameters A and B are regarded as functions of time and
the purpose of this section is to investigate what functional time dependence the secular equations will impose.
The only nonlinearity appears in Eq. (25b), so this equation is approximated as

ð1� fÞb
qp

qt
þ

qrz

qz
þ

qqz

qz
¼ 0. (29)

Adding the two equations of motion gives

q
qz
ðtzz � Be�2l0z � pÞ � frsgþ ð1� fÞrf g ¼ 0, (30)

or

tzz � Be�2l0z � p ¼ ðfrsg� ð1� fÞrf gÞðz�HÞ. (31)
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Using the simple constitutive equation

qtzz

qt
¼

E

f

qr

qz
, (32)

it follows that

E

f

Z t

0

qrz

qz
dt ¼ Be�2l0z þ pþ, (33)

where pþ ¼ p� pstat. Differentiate with respect to time

E

f
qrz

qz
¼

q
qt
ðBe�2l0zÞ þ

qpþ

qt
¼

q
qt
ðBe�2l0zÞ þ

qpþ

qt
, (34)

so,

E

f
qrz

qz
¼

q
qt
ðBe�2l0zÞ �

1

ð1� fÞb

qrz

qz
þ

qqz

qz

� �
. (35)

Now use Eq. (25d) and differentiate once with respect to z:

ð1� fÞ
q2pþ

qz2
þ R

f

ð1� fÞ

qqz

qz
�

qrz

qz

� �
�

q
qz
ðAe�2l0zÞ ¼ 0. (36)

Here are two equations in qqz=qz and qrz=qz and the solution is

qqz

qz
¼

1� f

RfðEbð1� fÞ þ 1Þ
ðEbð1� fÞ þ fÞ

qAðz; tÞ

qz

�
þð1� fÞ Rfb

qBðz; tÞ

qt
� ðEbð1� fÞ þ fÞ

q2pþ

qz2

� ��
, ð37Þ

qrz

qz
¼ �

1� f

RfðEbð1� fÞ þ 1Þ

qAðz; tÞ

qz
� Rfb

qBðz; tÞ

qt
� ð1� fÞ

q2pþ

qz2

� �
. (38)

These are substituted back into Eq. (29) to give

�Eð1� fÞ
qAðz; tÞ

qz
� Rf

qBðz; tÞ

qt
þ Eð1� fÞ2

q2pþ

qz2
� RfðEbð1� fÞ þ 1Þ

qpþ

qt
¼ 0. (39)

Both Aðz; tÞ and Bðz; tÞ possess a spatial dependence, given by the exponential decay and so it is
reasonable to assume that pþ also possesses this same dependence. Thus, a purely time-dependent
equation is obtained by setting Aðz; tÞ ¼ A0ðtÞe

�2l0z; Bðz; tÞ ¼ B0ðtÞe
�2l0z and pþðz; tÞ ¼ p0ðtÞe

�2l0z; it follows
that

2l0Eð1� fÞA0ðtÞ � Rf
qB0ðtÞ

qt
þ 4l20Eð1� fÞ2p0ðtÞ � RfðEbð1� fÞ þ 1Þ

qp0ðtÞ

qt
¼ 0. (40)

Laplace transforming, using the initial conditions B0ð0Þ and p0ð0Þ ¼ 0 reveals immediately that the equation is
exponentially unstable

2l0Eð1� fÞ bA0ðsÞ � sRfbB0ðsÞ þ 4l20Eð1� fÞ2bp0ðsÞ � sRfðEbð1� fÞ þ 1Þbp0ðsÞ ¼ 0. (41)

The instability can be removed if

2l0Eð1� fÞ bA0ðsÞ � sRfbB0ðsÞ ¼ f ðsÞ½4l20Eð1� fÞ2 � sRfðEbð1� fÞ þ 1Þ�, (42)

in which case bp0ðsÞ ¼ �f ðsÞ, (43)

where f ðsÞ is a stable function. Thus, physically, the secular equation imposes a form on the time dependence
of Aðz; tÞ and Bðz; tÞ.
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A realisation of this form is now put forward.
Introduce the function

F ðtÞ ¼ � F0e
t=t0 if 0otpT0

¼ � F0e
T0=t0 if t4T0. ð44Þ

This function has Laplace transform

bF ðsÞ ¼ �F0
eT0ð1�st0Þ=t0

sð1� st0Þ
þ

1

sð1� st0Þ
. (45)

This is the form chosen for f ðsÞ. The instability is removed when

t0 ¼
RfðEbð1� fÞ þ 1Þ

4l20Eð1� fÞ2
. (46)

To find the corresponding forms for Aðz; tÞ and Bðz; tÞ consider the function

GðtÞ ¼ 0 if 0otpq0

¼
t� q0

y0
if q0otpQ0

¼
Q0 � q0

y0
if t4Q0. ð47Þ

This function has Laplace transform

bGðsÞ ¼ 1

s2y0
ðe�q0s � e�Q0sÞ. (48)

The functions A0ðtÞ and B0ðtÞ will have the form of GðtÞ with coefficients qA, QA and yA and qB, QB and yB

instead of q0, Q0 and y0. The form C1
bA� sC2

bB is then

C1
bA� sC2

bB ¼ �C1e
�ðQA�qAÞs�qAs

s2yA

þ
C2e

�ðQB�qBÞs�qBs

syB

þ
C1e

�qAs

s2yA

�
C2e

�qBs

syB

. (49)

Choose qB ¼ 0 and let QA � qA be vanishingly small, then

C1
bA� sC2

bB ¼ C1ðQA � qAÞe
�qAs

syA

þ
C2e

�QBs

syB

�
C2

syB

. (50)

Finally, choose qA ¼ QB; this gives

C1
bA� sC2

bB ¼ e�qAs C1ðQA � qAÞ

syA

þ
C2

syB

� �
�

C2

syB

. (51)

All these are used in Eq. (41) with C1 ¼ 2l0Eð1� fÞ, C2 ¼ Rf, resulting in

e�qAs C1ðQA � qAÞ

syA

þ
C2

syB

� �
�

C2

syB

� 4l20Eð1� fÞ2F 0
eT0ð1�st0Þ=t0

s
�

1

s

� �
¼ 0 (52)

and the various parameters are determined:

yBF 0 ¼
Rf

4l20Eð1� fÞ2
; qA ¼ T0;

yA

QA � qA

F 0 ¼ �
Rf

2l0ð1� eT0=t0 Þ
. (53)

The parameters T0 and F0 are determined from

QA � qA

yA

¼ A;
QB

yB

¼ B, (54)

where A and B are defined in Eq. (26).
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The outcome of this analysis is then that in order to achieve stability the parameter B0ðtÞ climbs linearly with
time-constant yB for a time T0; after that B0ðtÞ remains constant at B. At the point t ¼ T0 the parameter A0ðtÞ

starts up; this parameter practically jumps to its final value A. The pressure meanwhile rises exponentially with
a time constant t0 to its new equilibrium value and reaches that value in a time T0. After t ¼ T0 the pressure
remains constant for as long as the oscillation phenomenon lasts at its equilibrium value given by Eq. (28). To
give an impression of the numbers for the earthquake agitated magma chamber, using the values in Table 1,
t0 ’ 0:01 s and T0 ’ 0:25 s. These time values should be seen in the context of the period of oscillation of 0.1 s,
so that the equilibrium value is attained after about three cycles. The value of the time constant t0 suggests that
the treatment of the time-dependence of the secular equations should include dynamic terms as well. The
conclusion may be drawn that the secular effects come into being in a short period of time (order of magnitude
of the cycle period). The duration of the whole phenomenon is estimated at some 60 s, so the validity of the
analysis is not in doubt.
3. Results for the static secular fields (parameter estimates)

The deviation from the static stress due to the agitated bed depends on the numerical range of the
parameters. Crucial among these is the value of the drag RðfÞ and its derivative CRðfÞ. Various formulae are
put forward in the literature, see for example Ref. [17]. Here the one proposed by Happel and Brenner [18] is
used; it depends on the melt viscosity Z and the particle radius a:

RðfÞ ¼
9Z
2a2

fð1� fÞð3þ 2f5=3
Þ

3� 9
2
f1=3
þ 9

2
f5=3
� 3f2

. (55)

For convenience introduce the non-dimensional parameters Rf � Ra2=Z and DR � CRa2=Z.
For the rheology of the dynamic stiffness EðfÞ the literature on oscillated compressed packed beds is useful.

According to Hardin and Richart [19] this modulus (in samples with isotropic prestress tiso) depends on the

void ratio eð¼ ð1� fÞ=fÞ and has the form E ¼ f 0t
1=2
iso ð2:17� eÞ2=ð1þ eÞ, where f 0 depends on the material

parameters of the grain. The non-dimensional parameters Ef � ð2:17� eÞ2=ð1þ eÞ and DE � qEf =qf are
introduced. All the f-dependent parameters are plotted in Fig. 2. Note that CE is rather greater than E itself
and, similarly, that CR exceeds R by a substantial margin.
Fig. 2. Drag and stiffness parameters Rf & Ef and the derivatives qRf =qf & qEf =qf as functions of the solidosity f.
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Table 3

Typical values for the static pore pressure and the secular correction at a vibration amplitude of the order of magnitude of the particle size

pstatð0Þ A=l0

Magma problem 2:6� 106 Pa 2� 105 Pa

Filter problem 103 Pa 130Pa
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The secular contribution to the intergranular stress at z ¼ 0 due to the quadratic effect is (see Eqs. (28)
and (27))

B�
A

2l0ð1� fÞ
¼

zRbr2
2oð1� fÞ3

CE

E
�

CR

R

� �
ð1� fÞ � 2

� �
. (56)

Call the term in square brackets x and this parameter is also plotted in Fig. 2. When x40 then a positive
secular stress follows, which would reduce the compressive intergranular stress from its static value. Note that
this term depends on the frequency as o�1br2. It is furthermore observed that a small variation of the solidosity
around the expected value of f ’ 0:6 may make this term either positive or negative. Add to that the fact that
the solidosity-dependence of the resistance and the stiffness are rather approximately known and one can see
that it will be very hard to predict whether a positive or negative extra stress is generated by the quadratic
effect.

The other contribution to the stress is the one that follows from the linear effect—Eq. (23)—and this
contribution takes the form

pð0Þ ¼
cZ

ð1� fÞ

a

h

ffiffiffiffiffiffiffiffiffiffi
Roz

2Ef

s br, (57)

which depends on the frequency as
ffiffiffiffi
o
p br.

The experiments reported in Ref. [1] indicate that the linear effect leads to the correct frequency dependence,
suggesting that the quadratic effect is negligible at these solidosities.

For the pore pressures things are rather different, however. For this quantity there is no relevant linear
contribution, but the influence of the quadratic contribution is outlined in Table 3 for a benchmark amplitudebd ¼ a.

It is seen that for the two sample problems at these amplitudes the pore pressure is reduced by some 10%.
This occurs rapidly, so bubble formation may well occur, thus increasing the fluid compressibility, see
Ref. [20]. This in turn has the effect of increasing A=l0, leading to a yet greater reduction and yet more
bubbles.
4. Conclusion

Theory is presented that addresses the mechanical behaviour of an agitated particle–fluid mixture which is
densely packed at a solids volume fraction of ca. 0.6. The problem is illustrated by two applications: (1) a
sediment-filled magma chamber and (2) an oscillated dead-end filtration problem. For the latter experimental
results are available, see Ref. [1]. The secular effects are calculated. These affect both the pore fluid pressure
and the intergranular stress in the vicinity of the point at which the mixture is agitated. The key concepts are
introduced, one of which is the particle pressure. This parameter may be associated with either collisions
between particles or dissipative phenomena in a densely packed bed. The orders of magnitude for both are
estimated, demonstrating that for amplitudes of vibration that are of the order of the particle diameter
substantial effects will take place. These effects are chiefly the reduction of the pore fluid pressure and the
reduction of the compressive solids-phase stress due to the linear particle pressure. The theory is essentially
linear and when the secular effects become large, it is expected that major nonlinearities will have to be
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accounted for. The latter are not dealt with in this paper, which is intended to demonstrate the basic nature of
an oscillated packed bed immersed in a fluid.
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